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Abstract: Recent research highlights the need to more systematically study the interac- 9 

tions among varying degrees of computer science (CS) access, school context and compo- 10 

sition, and subsequent CS participation, and, how taken together, these dynamically 11 

shape CS pathways. This study aims to address this need by collecting and analyzing lon- 12 

gitudinal data that tracks participation in CS courses among three cohorts of HS students 13 

at six large suburban schools in the northeastern US. Despite each of the six participating 14 

schools consistently offering multiple CS courses throughout the study period, our anal- 15 

yses reveal that access does not always translate into participation. While overall CS partic- 16 

ipation was highly variable across schools, the increases between successive cohorts was 17 

much more stable across schools (typically by six to nine percentage points). Yet, these 18 

gains were neither large enough to meaningfully move towards universal CS participa- 19 

tion, nor differential enough to close existing participation gaps. Although the sample 20 

limits the generalizability of findings, a cohort-centered analysis accounts for the frequent 21 

shifts within schools’ CSE ecosystems that cloud other longitudinal methodologies, and  22 

the consistency of our findings across multiple contexts highlights how such analyses  23 

paint a comprehensive picture of access, participation, persistence, and success in CS ed- 24 

ucation. 25 

Keywords: computer science education; high school; access; participation; enrollment; 26 

gender disparity; racial disparity 27 

 28 

1. Introduction 29 

High school (HS) computer science (CS) courses are a primary tool to provide neces- 30 

sary knowledge and skills to students. These courses serve to both encourage and prepare 31 

students to pursue future CS-related opportunities, both in college and beyond (Armoni 32 

& Gal-Ezer, 2022). Over the past decade in the U.S., major public investment and educa- 33 

tional policy have worked to expand access to K-12 computer science education (CSE), 34 

and evidence suggests that progress has been made. For example, 60% of high schools in 35 

the US offered a foundational computer science course in the 2023-2024 school year, a 36 

stark increase from just 35% 6 years before (Code.org et al., 2024). Yet, long-term un- 37 

derrepresentation of females, Black and Hispanic students, and economically disadvan- 38 

taged students across all stages of the CS pipeline continues to persist (Chan et al., 2022; 39 

Freeman et al., 2024; L. Jaccheri et al., 2020; National Academies of Sciences & Medicine, 40 

2024). Recent national data reveals that despite representing half of the population, female 41 
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students made up only 33% of HS CS course-takers in 2024; similarly, Hispanic students 42 

account for 29% of the national HS population, but only 20% of CS course-takers 43 

(Code.org et al., 2024). When considering AP CS participation, Black students accounted 44 

for only 4% of AP CS exams in 2019, Hispanic students 12%, and females 24% (Wyatt et 45 

al., 2020), all much lower than their share of the population . Further, in schools serving 46 

student populations historically underrepresented in CS, AP CS courses have a lower 47 

minimum standard for programming skills, potentially impacting students’ acquisition of 48 

transferable skills for future study and employment (Sax et al., 2022). 49 

Taken together, this suggests that access to CSE in HS is a necessary, but not suffi- 50 

cient, step towards broader and more equitable participation of students from historically 51 

underrepresented groups (Bruno & Lewis, 2021; Margolis et al., 2012). Recently, research 52 

has highlighted the need to more systematically study the interactions among CS access, 53 

school context and composition, and subsequent CS participation, and, how taken to- 54 

gether, these dynamically shape CS pathways (National Academies of Sciences & 55 

Medicine, 2024). Such research could uncover the mediators of CS participation for differ- 56 

ent types of learners, in different kinds of schools, with access to different kinds of courses. 57 

In turn, findings could inform changes to policy and practice to support the recruitment, 58 

engagement, and retention of underrepresented students into CSE pathways.  59 

Unfortunately, data compatible with such robust analyses are not readily available. 60 

Current research relies heavily on publicly available educational data. Although data of 61 

this kind is suitable for capturing access to CSE (such as CS course availability), it is typi- 62 

cally aggregated, both (a) within schools, inhibiting analyses of specific student groups or 63 

their intersections, and (b) across schools, clouding any insight into student CSE partici- 64 

pation, since school-to-school variations cannot be disentangled without dis-aggregated, 65 

student-level data. For example, Code.org et al. (2024) show that Hispanic students make 66 

up 29% of the U.S. HS student body, but only 20% of CS course-takers. This provides 67 

evidence for a national skew in CS participation, but cannot make sense of CSE participa- 68 

tion on smaller scales (such as individual schools, districts, or states). 69 

Research often looks at the collection of all CS enrollments from year to year, com- 70 

paring the demographic makeup of students enrolled in CS courses with overall popula- 71 

tions. Although an informative approach, this is not a strong analytical match to the fluid 72 

and rapidly evolving CSE spaces that are studied, where curricular changes, teacher turn- 73 

over, and evolving policies impact CSE regularly (Adrion et al., 2016; Ni et al., 2024; 74 

Pollock et al., 2017). Fluctuations in the year-to-year demographic composition of HS CS 75 

course-takers could be caused by actual change in student behavior, but this kind of anal- 76 

ysis would become compromised over time by changes in course pre-requisites, grade- 77 

level eligibility, offering more or fewer sections of courses, changes in staffing, etc. Exam- 78 

ining patterns in year-to-year HS CS enrollments offers an imprecise measure; for in- 79 

stance, detecting that 25% of HS students in a particular year achieving 100% is only pos- 80 

sible if every HS student (in all grades 9-12) takes a CS course every year, but achieving 81 

25% does not imply that every HS student takes any CS.  82 

A shift in analysis perspective can offer more detail and relevant, actionable findings. 83 

Instead of comparing the entire HS student body each year, considering each year’s grad- 84 

uating cohort’s cumulative HS experience offers many benefits. A longitudinal method- 85 

ology in this vein allows for more nuanced analyses of participation at a student level, can 86 

be more easily studied alongside its interplay with access, which enables researchers to 87 

identify impactful shifts in school CSE policy and capacity. This level of granularity would 88 

not be possible when considering the entire HS student population each year, as course 89 

and policy changes do not impact all students equally (say, by grade level). A cohort- 90 

based analysis, on the other hand, groups students that are more equally affected by pol- 91 

icy shifts. 92 
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Despite a growing need to more carefully examine student participation in CS, and a 93 

methodology that could frame those analyses, there is a shortage of data and research that 94 

explores CS participation in this way and considers how it evolves, both generally and for 95 

different student populations (particularly by gender and race). This study aims to ad- 96 

dress this gap by collecting and analyzing longitudinal academic data and tracking CSE 97 

in three cohorts of HS students at six large suburban schools in the northeastern U.S. Each 98 

of the six participating schools regularly offers CS courses, which allows us to interpret 99 

participation more independently of access. Additionally, in each of the schools, the num- 100 

bers, names, and types of courses offered each year varies, which offer school policy/ca- 101 

pacity shifts that can be later matched and associated with changes in participation. Such 102 

fluctuations are commonplace in CSE; this approach, and its findings, will be applicable 103 

beyond the scope of the studied sample of schools. 104 

2. Data and Methods 105 

This study utilizes student-level administrative data from six public high schools in 106 

a northeastern state, collected in accordance with ongoing data-sharing agreements be- 107 

tween the district and the University. The sample of students for the present study con- 108 

sists of three cohorts: students who completed high school in the spring of 2022, 2023, or 109 

2024 for which we were able to obtain HS course enrollment data for 9th, 10th, 11th, and 110 

12th grade (N=3,641 students). This selection criterion ensures that within each cohort, all 111 

students had the same opportunities to take a CS course(s) during their high school tenure 112 

(and students are not “undercounted” for missing years of data). Characteristics of each 113 

school and its student population are shown in Table 1. 114 

Enrollment data was aggregated by school and year to determine the number and 115 

type of courses offered to students during each academic year. First, all courses were clas- 116 

sified as either “CS” or “not CS” using codes from the School Courses for the Exchange of 117 

Data (SCED) classification system (National Forum on Education Statistics, 2023), where 118 

a manually verified subset of courses with codes 10 (Information Technology) or 21 (En- 119 

gineering and Technology) were classified as “CS.” Next, each CS course was classified as 120 

either “foundational” or “advanced.” Courses were considered foundational that were 121 

introductory and/or level 1 as determined by their course names, levels, and course de- 122 

scriptions (as available). For example, Introductory Programming, Computer Applica- 123 

tions, CS Essentials, CS Discoveries, and App Development were considered foundational 124 

for this analysis. Courses such as Computer Programming II, AP CSP, AP CSA, Interactive 125 

Media and Game Design, Cybersecurity and Computer Networking II, and Programming 126 

with Java (with a prerequisite) were considered advanced. Importantly, an “advanced” 127 

classification does not necessarily imply that students must complete a foundational 128 

course as a prerequisite. 129 

Variables were then created for each student, using enrollment data, to indicate 130 

whether the student took at least one CS course, foundational CS course, and advanced 131 

CS course at any point during their HS tenure. Then, grouped within their school cohorts 132 

(the Class of 2022, 2023, or 2024, hereafter referred to as Co22, Co23, and Co24), CS partic- 133 

ipation was calculated as the percentage of students within a group (meeting the data 134 

inclusion requirement) taking at least one relevant course. Drawing from demographic 135 

data, CS participation was also calculated for subgroups of each cohort, such as the per- 136 

centage of females in the Co22 taking at least one CS course or the proportion of Hispanic 137 

students in the Co24 that took an advanced CS course. 138 

All data cleaning, preprocessing, and analyses took place in R (R Core Team, 2024), 139 

and additional packages were used to present data and findings (Iannone et al., 2024; 140 

Pedersen, 2024; Wickham, 2016).  141 

 142 
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 143 

Table 1. Characteristics of the sample. 144 

Characteristic HS 1 HS 2 HS 3 HS 4 HS 5 HS 6 Total 

All Students (N) 992 363 585 379 1123 199 3641 

Gender        

Male 
474 

(47.7%) 

193 

(53.2%) 

295  

(50.4%) 

187  

(49.3%) 

555  

(49.4%) 

106  

(53.3%) 

1810 

(49.7%) 

Female 
518 

(52.2%) 

170 

(46.8%) 

290  

(49.6%) 

192  

(50.7%) 

568  

(50.5%) 

93  

(46.7%) 

1831 

(50.3%) 

Race        

Asian 
89  

(9%) 

80  

(22%) 

12  

(2.1%) 

24  

(6.3%) 

52  

(4.6%) 

11  

(5.5%) 

268 

(7.4%) 

Black 
29  

(2.9%) 

13  

(3.6%) 

30  

(5.1%) 

36 

(9.5%) 

162  

(14.4%) 

23  

(11.6%) 

293 

(8.0%) 

Hispanic 
158  

(15.9%) 

129  

(35.5%) 

501  

(85.6%) 

189 

(49.9%) 

186  

(16.5%) 

87  

(43.7%) 

1250 

(34.3%) 

White 
702 

(70.7%) 

135 

(37.2%) 

39 

(6.7%) 

125 

(33%) 

681 

(60.6%) 

73 

(36.7%) 

1755 

(48.2%) 

CS Information *        

CS, All 5 (1, 7) 1.8 (0, 4) 4 (3, 5) 3.3 (1. 5) 7.3 (3, 11) 2.3 (1, 3) n/a 

CS, Foundational 2.2 (1, 3) 0.8 (0, 2) 2.5 (2, 3) 1.7 (1, 2) 4.6 (2, 7) 1 (1, 1) n/a 

CS, Advanced 3.2 (1, 4) 1 (0, 2) 1.5 (1, 2) 1.7 (0, 3) 2.7 (1, 4) 1.6 (1, 2) n/a 

* Number of courses from 2018-2019 through 2023-2024 school years: Avg. (Min, Max). 145 

3. Results 146 

3.1. Overall Participation in CS Courses 147 

Overall CS participation, the percentage of students within a graduating class who 148 

have taken at least one CS course in 9th – 12th grade, offers a comprehensive, but broad, 149 

measure of CS participation. As seen in Figure 1, across the six schools studied, this figure 150 

generally remains below 50%, with two schools consistently showing participation rates 151 

under 25% for the three cohorts. Across all schools, for the Co22, the percentage of stu- 152 

dents taking at least one CS course ranged from 12% - 80%; for the Co23, the range ex- 153 

panded slightly to 12%-83%, and for the Co24, the spread increased to 18%-86%. 154 

Although there are significant variations across schools, CS participation rates of suc- 155 

cessive cohorts within schools is much less volatile, and trends, however small, begin to 156 

emerge from the data. Compared to the Co22, the Co24 has a higher rate of CS participa- 157 

tion in every school, with an average net change of +8.5% (though only two schools 158 

showed growth between both the 2022 to 2023 cohorts and 2023 to 2024 cohorts). Aside 159 

from HS 3, which had a +13.5% change over this period, all schools showed increases be- 160 

tween 6% and 9%, pointing towards somewhat steady, moderate growth in CS participa- 161 

tion. 162 

Enrollment data offers additional insights into not only whether students took a CS 163 

course but also which specific courses they completed during their four years of high 164 

school. When CS participation was divided into foundational and advanced CS participa- 165 

tion, as shown in Figure 2, more nuanced, sometime sporadic, patterns emerge. For in- 166 

stance, by examining the enrollment patterns of HS 6, which demonstrated the highest 167 
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overall CS participation rates, we see that most of their enrollment is in foundational 168 

courses, and for the Co22, HS 6’s advanced CS participation is more in line with other  169 

 170 

Figure 1. Participation in CS Courses by Graduating Cohort and School. 171 

schools, but growing over time. Generally, advanced course participation is lower than 172 

foundational course participation across all schools. For the 2022 cohort, advanced course  173 

participation ranged from 5%-23%, compared to 8%-71% for foundational courses. Simi- 174 

larly, for the 2024 cohort, advanced course participation ranged from 8%-47%, compared 175 

to 4%-83%. However, the within-school participation rates of foundational and advanced 176 

CS courses from cohort to cohort do not share the same measured, stable change that 177 

overall CS participation rates displayed. 178 

3.2. Participation in CS Courses by Gender 179 

When examining CS participation through the lens of gender, disparities between 180 

male and female students emerge across schools and cohorts. Across all studied cohorts, 181 

overall CS participation was higher for male students compared to female students. 182 

Across all six schools, some of the highest gendered differences in participation were 183 

found in HS 3, where 73% of males in the Co24 took at least one CS course, compared to 184 

only 41% of females, a gap of 32%; in the same school, skews for previous cohorts were 185 

also pronounced, with a 36% gap for Co23 and 31% for Co22. On the other end, HS 2 186 

consistently saw smaller gender gaps in CS participation, with the male CS participation 187 

percentage exceeding the female percentage by 22%, 9%, and 11% for the Co22, Co23, and 188 

Co24, respectively. 189 

Additionally, we used a gender-based lens to examine participation in foundational 190 

and advanced courses separately. Mirroring the overall trends, for both course types, and 191 

across all schools, male participation exceeded female participation (except for HS6 Co24, 192 

which had a near overlap and very small group size (11 students) for advanced courses). 193 

Some of the largest instances of gendered participation gaps by course type are HS 3’s 194 

foundational courses, with 43% of males and 17% of females in the Co22 taking a founda- 195 

tional CS course (a gap of 26%), and gaps of 36% and 21% for the Co23 and Co24, respec- 196 

tively. Foundational courses at HS 6 also saw large gender skews, with gaps of 31%, 24%,  197 

 198 
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Figure 2. CS Participation Details & Trends, All Students by Cohort and School. 199 

and 17% across cohorts. Conversely, advanced courses at HS 5 and HS 2 were much closer 200 

to gender parity, with gaps for successive cohorts of 6%, 9%, and 10% for HS 5 and 7%, 201 

6%, and 5% for HS 2. Advanced courses tended to have smaller participation gaps, but 202 

this is not always the case: like their advanced courses, HS 2’s foundational courses were 203 

also closer to parity, with male participation exceeding female participation by 17%, 10% 204 

and 4% across the three cohorts. 205 

Looking over time, the range of female CS participation across schools in Co22 was 206 

5%-68%, which increased and widened slightly to 10%-79% for Co24; during the same 207 

time, the range of male participation in CS courses moved from 19%-89% to 26%-96%. The 208 

data for all studied schools are displayed in Figure 3, where the red lines denote overall 209 

CS participation, dashed for males and solid for females. Note that in HS 5, all advanced 210 

courses require a foundational course as a pre-requisite, so red lines are “hidden” under- 211 

neath the green ones, as they are identical. 212 

Once again, despite sizable variation in participation across schools, within-school 213 

variation appears more stable and indicative of gradual change over time. Because overall 214 

CS participation varies so much among schools, comparing the female and male CS par- 215 

ticipation across schools is not trivial. Female participation at HS 6 exceeds male partici- 216 

pation at all other schools; this does not mean that females at HS 6 are participating in CS 217 

more equitably, as a gender gap exists at HS 6, rather, it’s a reflection of HS 6’s overall 218 

higher CS participation rates. However, examining how these percentages change over 219 

time allows us to begin to look at the school-to-school variation at a more comparable 220 

figure. As discussed in Section 3.1, across the studied schools, there was an average in- 221 

crease of +8.5% in overall CS participation; when stratified by gender, the change for fe- 222 

males alone is +7.2%, and +8.9% for males from Co22 to Co24. 223 

Across cohorts, we are also able to gauge whether different types of courses, and at 224 

different schools, are moving towards gender parity over time by looking at how the gen- 225 

der participation gap changes from cohort to cohort. In most cases, the trajectories of male 226 

and female CS participation over time appear similar (that is, CS participation is, and 227 

stays, higher for males by a relatively constant amount). However, in some isolated cases, 228 

analyses reveal movement towards gender parity: foundational courses in HS 6 (which 229 

has generally higher levels of CS participation than other schools) saw 52% female and 230 

83% male participation in the Co22, and 76% female and 93% male participation for the 231 

Co24, reducing the gender gap from 31% to under 17%. Similarly, HS 2 (which has gener- 232 

ally lower levels of CS participation) also moved towards gender parity, reducing their 233 

overall gender participation gap from 22% to 11% from the Co22 to the Co24. 234 

 235 

Figure 3. Participation in CS Courses by Gender, Graduating Cohort and School. 236 

 237 
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 238 

3.3. Participation in CS Courses by Race/Ethnicity 239 

When examining CS participation through the lens of race/ethnicity, disparities 240 

among racial groups also emerge across schools and cohorts. Mirroring the overall trajec- 241 

tory in CS participation, CS participation is higher for the Co24 than the Co22 for many, 242 

but not all, racial/ethnic groups. The degree of participation varies among schools, co- 243 

horts, and course types. As was the case for gender-based analyses, analyses reveal dif- 244 

ferences in both the raw size of the participation gaps for various racial/ethnic groups as 245 

well as the direction these gaps appear to move with time. In some cases, data provide 246 

evidence for movement towards racial parity in CS participation, and in other cases, 247 

movement away from it. Unlike the gender-based analyses presented in Section 3.2, 248 

schools’ demographic compositions are more at play for racial/ethnic analyses. As such, 249 

variance in group sizes within and across schools introduce additional volatility in the 250 

data, and more general findings are presented to avoid over-interpretation. 251 

Across the three schools where Asian students comprise at least 5% of each cohort 252 

(HS1, HS2, and HS4), Asian students participated in all CS courses at higher rates than 253 

their peers. In HS3, Hispanic and White students are much closer to parity with 42 to 58% 254 

Hispanic and 50 to 58% White students participating in at least once CS course across the 255 

3 cohorts. Finally, across the two schools where Black and Hispanic students comprise at 256 

least 5% of each cohort (HS4, HS5, and HS6), the difference in participation rates between 257 

the schools is large from a high of 21% Black in HS5 to a high of 100% in HS6, 13% Hispanic 258 

to 89%, and 13% White to 87%. Looking within schools reveals trends that appear more 259 

stable and gradual. For example, the 2023 cohort in HS6 had 78% Black, 85% Hispanic, 260 

and 81% White students taking at least one CS course within the four years of high school.  261 

Finally, Asian students consistently have higher participation in advanced courses 262 

than their peers. For example, 42% of Asian students in the 2024 cohort have taken an 263 

advanced CS course versus 7% of Hispanic students and 26% of White students (with 15% 264 

of Asian students having had taken foundational CS, 16% Hispanic and 19% White).  265 

 266 

Figure 4. CS Participation Details & Trends: All Students by Race, Cohort, and School 267 

Red, italicized cells indicate that the group makes up less than 5% of the school student population. 268 

* Change is calculated as the net increase/decrease between the Co22 and the Co24.  269 
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4. Discussion  270 

The results from this study underscore the value of a cohort-based, longitudinal 271 

methodology when examining CS participation at a school-specific level. In contrast to 272 

typical statewide or national studies that often rely on snapshots or aggregated figures, 273 

our approach provides a more fine-grained view of how participation evolves within the 274 

same group of students over their four-year high school experience. By following each 275 

graduating cohort, we were able to account for changes in school policies, resource allo- 276 

cations, and shifting course offerings over time - factors that we know happen frequently 277 

in CSE ecosystems. While larger-scale studies can treat these fluctuations as “noise” due 278 

to their sample size and study scope, more local explorations cannot. This design allows 279 

for a more nuanced understanding of what CS participation looks like at a school level 280 

and even allows further subdivisions by course type or specific student groups. 281 

Importantly, within a cohort, students experience the same fluctuations to their CSE 282 

ecosystem at the same point in their HS career. Consider, as a fictitious example, that a 283 

school offered a new 10th grade CS course beginning in the 2020-2021 school year. By 284 

adopting a cohort-centric lens, this change, along with its potential impact, will become 285 

relevant with the Co23, who are in 10th grade when the course begins. Although the Co22, 286 

for instance, is in HS at this time, they are in 11th grade and would not be eligible for this 287 

course. Under more popular paradigms, where the total of HS CS enrollments are consid- 288 

ered on a year-to-year basis, it’s less clear when the effects of this course can be observed, 289 

and what changes are attributable to it. Looking at the 2020-2021 year, roughly 25% of 290 

students (one grade level) are impacted by the change; in the following year, 50% of the 291 

HS student population will have this 10th grade course as part of their CSE experience, 292 

and so on. It is also possible the addition of this course outcompetes existing courses, and 293 

instead of increasing participation, it simply changes which CS course(s) students take. If 294 

this were the case, it would be very difficult to detect without a cohort-based perspective, 295 

as there would still be a short-term increase, mid-term fluctuations, and a long-run return 296 

to 2019-2020 levels. This would be readily detectable under the cohort analyses presented 297 

in this study (the CS participation % of the Co23 would remain steady). In short, the goal 298 

of HS CSE is to provide HS students with CS instruction (and less about the particulars of 299 

when that instruction might occur), and this is precisely what a cohort analysis measures. 300 

Despite each of the six participating schools offering multiple CS courses throughout 301 

the study period, our analyses reveal that access alone does not beget participation. Over- 302 

all, CS participation is generally under 50%. Females consistently enrolled in CS courses 303 

at lower rates than males, and Black and Hispanic students continued to participate at 304 

lower rates than their White and Asian peers. Importantly, these discrepancies were evi- 305 

dent regardless of the schools’ overall participation level. CS participation generally may 306 

be higher or lower in certain schools (ranging between under 25% to over 75%), but certain 307 

groups were consistently underrepresented within their schools. 308 

When looking across cohorts (over time), this study finds that trend lines of CS par- 309 

ticipation are quite consistent across diverse school contexts, even if the absolute numbers 310 

vary substantially. Where one school’s enrollment might climb from 20% to 26%, another 311 

moves from 70% to 76%, but in both scenarios, the overall pace of change in CS participa- 312 

tion may be able to be understood and calculated across schools. This pattern suggests 313 

that local conditions like whether foundational CS courses require prerequisites, how 314 

teachers encourage students to enroll, whether the “introductory” CS course is an AP 315 

course, or the presence of initiatives to recruit underrepresented groups may have had a 316 

strong influence the baseline level of CS participation years ago or at their inception, while 317 

overall growth today appears to follow a common trajectory. Although overall CS partic- 318 

ipation generally increased for each successive cohort (typically by six to nine percentage 319 

points), schools that started with relatively low participation rates did not exhibit notably 320 
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faster growth. If this trajectory continues, CSE is not on a path to become “equalized” 321 

across schools.  322 

When considering the persistent underrepresentation of specific student groups in 323 

CSE, it is important to note that even when gains in CS participation over time are present 324 

(which is not the case for all racial/ethnic groups), they were neither large enough nor 325 

differential enough to close existing equity gaps in the years to come, suggesting that the 326 

present trajectory of CSE evolution may not be sufficient to reach racial or gender parity. 327 

Targeted supports and intentional outreach strategies may be needed to accelerate the 328 

growth of underrepresented students’ participation in CSE beyond passive gains. Achiev- 329 

ing parity necessitates faster growth rates for historically underrepresented students and 330 

ensuring that all students are participating in CS regardless of where they live necessitates 331 

the same in schools with lower initial participation. Consequently, simply celebrating pos- 332 

itive trends may mask the continued marginalization (or worse, growing underrepresen- 333 

tation) of certain subgroups in CS pathways. Future research should further investigate 334 

targeted strategies—like early exposure, guidance counseling, and culturally responsive 335 

curricula—that can accelerate participation gains for underrepresented students and do 336 

so in a way that studies whether such initiatives actually (a) grow CS participation beyond 337 

passive gains, and (b) put underrepresented groups on a trajectory to reach parity, rather 338 

than sustain their underrepresentation. Even when growth exists, underrepresentation 339 

can grow. 340 

Study limitations must also be acknowledged. The present research draws on a rela- 341 

tively small sample of six suburban schools in one northeastern state, which may limit the 342 

generalizability of our results. However, a case can be made for generalizability when 343 

considering that despite the differences in school contexts, patterns across schools stabi- 344 

lize when examining change over time. Additionally, the methodology we present here, 345 

and the case we make for its use, is a strong alternative to comparing share of CS enroll- 346 

ments to share of overall population and can readily be applied to other schools. These 347 

methods provide insights and granularity for local samples that broader (more general- 348 

izable) studies cannot; limited generalizability is in some ways a feature, not a bug, of this 349 

approach. The true limitation is data availability. Student-level enrollment and demo- 350 

graphic data is not feasible to obtain without data-sharing agreements, measures in place 351 

to protect students’ identities, and often, logistic processes that are not standard across 352 

schools. It takes time to build the relationships and trust with schools to get the requisite 353 

for these analyses. Even then, the requirement that each student have four years of avail- 354 

able data is stringent, and excludes transfer students, drop-outs, is vulnerable to students 355 

skipping or repeating grades, and results in many students from a school not being in- 356 

cluded in analysis. However, the analysis presented in this study, which excluded data in 357 

this way, offers relatively consistent and stable findings, suggesting the analyses may not 358 

be extremely sensitive to excluded data.  359 

The results presented here reach across multiple contexts and highlight the im- 360 

portance of analyzing CS participation at a fine-grained level. We provide not only a the- 361 

oretical motivation for this type of analysis but also demonstrate that its application yields 362 

insights that can be found, interpreted, and acted upon, even with limited data. The out- 363 

lying data points, unusually high or low participation rates, or rapid changes in CSE par- 364 

ticipation that are revealed by this approach can be paired with historical data on changes 365 

in course offerings, school policy, or staffing. This work, already underway, has the po- 366 

tential to discover complex relationships among school contexts, CSE ecosystems, how 367 

they change, and the resulting impacts student participation and behavior. Other future 368 

efforts, some already taking place, can (a) expand the number and diversity of schools 369 

studied; (b) rigorously investigate data inclusion requirements and the sensitivity of re- 370 

sults to data exclusion; (c) devise methods to methodologically account for transfer or 371 
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drop-out students; (d) augment the power and precision of analyses by incorporating 372 

compatible, robust statistical methods beyond descriptives; (e) leverage additional, poten- 373 

tially qualitative, data on student motivations and barriers to further situate and contex- 374 

tualize findings, and; (f) extend the longitudinal nature of the cohort analyses by both 375 

extending the reach of data for individual cohorts (with pre- and post-HS CSE participa- 376 

tion) and increasing the number of cohorts studied. 377 

With more and more schools offering CS courses, we must quickly move away from 378 

thinking of access as a binary. Within HS CSE, varying groups of students have varying 379 

degrees of access to varying types of courses. In the past, understanding the intersections 380 

between access (through this comprehensive lens) and the complexities of participation 381 

was a technical challenge. Now, it is an imperative. 382 
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