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Abstract 
In this study, we used multilevel logistic regressions to examine the impact of student- and school-
level characteristics on three diVerent HS course-taking outcomes: (a) any technology course; (b) 
any CS-focused technology course; and (c) any applied technology course. The analyses reveal that 
male and Asian students are more likely to enroll in technology courses regardless of type. Positive 
predictors of enrollment in applied technology courses were being Hispanic and attending a school 
with higher percentages of economically disadvantaged students. Importantly, even when CS-
focused courses were available and MS CS was a requirement, enrollment disparities among 
underrepresented groups persisted. This suggests that the type of technology course significantly 
influences enrollment patterns and highlights the complex factors aVecting access to CS 
education. 

 

Background 
Years of research on educational outcomes and opportunities have demonstrated that inequity in 
computer science (CS) is profound and widespread (NCES, 2019). Opportunities to learn in CS 
education are unevenly distributed, and students’ experiences vary tremendously by race, ethnicity, 
socio-economic class, gender, and a myriad of other factors (Code.org, 2019). Despite major 
national and state eVorts over the past 10 years, many groups have been systematically locked out 
of participation in CS education and CS careers (NASEM, 2024). The need to recruit and retain 
diverse students in CS is as high as ever (English, 2017; Madkins et al., 2019; Wiebe et al., 2019). In 
fact, the majority of public school students have not been exposed to any formal computer science 
education (CSE) prior to high school (HS; Gallup & Google, 2016).  

There is no single pathway to CS learning and success. For many children and youth from 
underrepresented groups, CS pathways are fluid and dynamic as a function of learning 
opportunities both within and outside of school (NASEM, 2024). Many experience barriers to 
successful pathways, including course requirements, stigma and bias, low self-eVicacy, and lack of 
out-of-school programs (Committee on STEM Education, 2018; Peckham et al., 2007). In addition, a 
major factor contributing to existing inequities is the acute shortage of stable and systematic CS 
course oVerings and teachers who are adequately trained to deliver available CS curricula in K-12 
education (Cuny, 2012; Leyzberg & Moretti, 2017; Montoya, 2017).  

Providing CSE in middle school (MS) has been proposed as a strategy for addressing existing 
inequities, by engaging students at a time when their perceptions of gender roles and career 
trajectories are formed and as they actively plan for their high school and college education (Barker 
& Aspray, 2006; Wei et al., 2010). Additionally, research shows that improving CS curricula and 
cross-curricular integration of CS can help students from underrepresented populations recognize 
the intellectual and practical value of pursuing CSE (Estrada et al., 2016). Finally, without a clear 
CSE pathway, many traditionally underrepresented students in CS are eVectively being pushed into 
pursuing non-technical/non-STEM career pathways (Denner, 2011). 

In this study, we sought to examine the impact of student- and school-level characteristics on 
technology course-taking in high school. We used administrative data from several 
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demographically diverse school districts in a northeastern state to assess the relative impact of 
student factors (e.g., gender, race, socioeconomic status, special education status) and school 
factors (e.g., CS as a requirement for middle school graduation; student body demographics) to 
course taking. The study’s aim was to produce a more nuanced understanding of factors that 
influence technology course-taking by students from underrepresented groups. 

 

Sample 
Seven public school districts in a northeastern state provided administrative data from their middle 
and high schools that allowed us to examine the predictors of technology course enrollments in 
high school. We focused our analyses on students who: (a) graduated from high school in spring 
2023, (b) had four full years of high school course enrollment data; and (c) had grade 8 achievement 
data. By narrowing our sample this way, we were able to focus on students who had four full years 
to opt in to technology courses and examine which personal and school-level characteristics were 
most closely related to technology course-taking in high school. We also excluded 12 students who 
reported as mixed race because of the small group size.  

A total of 990 students with complete data met these inclusion criteria. If at any point during high 
school a student was classified as special education, English learner, economically disadvantaged, 
or chronically absent, we coded them as “Yes” on that particular variable for the purpose of 
analysis. We included an indicator for chronic absenteeism at any point during the four years of 
high school because chronic absenteeism has risen in the post pandemic years (Malkus, 2024). We 
lacked precise information on middle school course-taking, so as a proxy we included a dummy 
variable to indicate whether the student graduated from a middle school where a computer science 
class was required.  

To test whether predictors of enrollment varied by course content, we reviewed high school course 
oVerings and coded them as follows: 

• CS-focused courses were those that focused more on theory, programming, robotics, and 
the creation of technology solutions 

• Applied technology courses were those that focused more on the use of existing 
technologies in various settings (more akin to a vocational-style course) 

• A technology course was identified as being either one of these two categories (which are 
mutually exclusive). 

Characteristics of the sample are shown in Table 1. 

 

Analyses 
We conducted multilevel logistic regressions for three diVerent high school course-taking 
outcomes: (a) any technology course; (b) any CS-focused technology course; and (c) any applied 
technology course. Given the nesting of students within schools, we first calculated the intra-class 
correlation coeVicient (ICC) for each of the three outcomes. The guidelines for determining the use 
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of multilevel modeling (MLM) are generally well defined, although the specific thresholds for its 
application can be subject to debate. Following Hox (2010), we interpreted ICCs of 0.05, 0.10, and 
0.15 as small, medium, and large, respectively. For our study, the ICCs for the no predictor 
(null/empty model) model were 0.31, 0.21, and 0.45 for the respective outcomes, indicating a large 
school-level variability and justifying the use of multilevel models. 

The model that we applied to each of these three outcomes included the following Level 1 (student) 
variables: gender, race (White as the referent group), special education, English learner, economic 
disadvantage, chronic absenteeism, and grade 8 GPA. Percent special education, economically 
disadvantaged, English learners and whether the student attended a middle school where CS was 
required were included at Level 2 (school). We added a variable that represented the percentage of 
all technology courses oVered that are CS. Given our interest in understanding the factors that 
influence students' choices between diVerent types of technology courses (i.e., CS-focused vs. 
applied technology), it was essential to control for the availability of CS courses. 

 

Results 
The results of the multilevel logistic regressions are presented in Error! Reference source not 
found.. Odds ratios greater than 1.0 indicate greater probability of taking a class (i.e., a positive 
eVect), and odds ratios of 0.0 to 1.0 indicate lower probability of taking a class (i.e., a negative 
eVect). An odds ratio of 1.0 can be interpreted as “no eVect.” We also report Cohen’s d as another 
measure of eVect size, along with 95% confidence intervals and p values. 

Intraclass correlations ranged from 0.00 to 0.10. Note that all of the between-school variation in 
applied technology course-taking is captured by the four school-level predictors.  

Marginal R2 values (i.e., the proportion of variance explained by fixed eVects) range from 0.270 to 
0.461. Conditional R2 values (i.e., the proportion of variance explained by both the fixed and random 
eVects) range from 0.316 to 0.342. 

Any Technology Course. Just over a quarter of the variance in HS technology course taking is 
explained by student characteristics (27%). Over a third of the variance is explained when school 
characteristics are included (34.2%). Being male, being Asian, and being in a school with a higher 
percentage of economically disadvantaged students had odds ratios that were greater than 1.0 and 
statistically significant, indicating that those characteristics were associated with an increased 
probability of taking a HS technology course. Being in a school with a higher percentage of English 
learners dramatically decreased the likelihood of taking a HS technology class. Additionally, the 
higher the percentage of technology courses oVered that are CS, the greater the odds of students 
taking technology courses. 

Any CS-Focused Technology Course. Similarly, slightly over a quarter of the variance in HS CS 
course taking is explained by student characteristics (28.9%). Nearly a third of the variance is 
explained when school characteristics are included (31.6%). Again, being male and being Asian 
were greater than 1.0 and statistically significant, indicating that those characteristics were 
associated with an increased probability of taking a HS CS course. Being in a school with a higher 
percentage of English learners dramatically decreased the likelihood of taking a HS CS class. 
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Additionally, the higher the percentage of technology courses oVered that are CS, the greater the 
odds of students taking technology courses. 

Any Applied Technology Course. Nearly half of the variance in applied technology course-taking 
was explained by student characteristics (46.1%). Being male, being Asian, being Hispanic, and 
being in a school with a higher percentage of economically disadvantaged students were greater 
than 1.0 and statistically significant, indicating that those characteristics were associated with an 
increased probability of taking an applied technology course. Being in a school with a higher 
percentage of English learners dramatically decreased the likelihood of taking an applied 
technology class. Again, the higher the percentage of technology courses oVered that are CS, the 
greater the odds of students taking applied technology courses. 

 

Discussion 
We found that being male and being Asian were consistently positive predictors of technology 
course-taking, whether its focus was CS or applied technology. When we sought to unpack the 
reason why the school level factor, percent economically disadvantaged was a positive predictor of 
any technology course taking, we found that the eVect was driven by enrollment in applied 
technology courses (e.g., IT essentials; financial and technology literacy). Indeed, when we 
narrowed our focus to the predictors of applied technology courses, being Hispanic was nearly as 
strong a positive predictor as being Asian. 

The two main conclusions of these analyses are: (a) it is important to consider the type of 
technology courses that are available to students, and (b) even when CS-focused courses are 
oVered in HS and even if MS CS was a requirement, the disparity in enrollments by 
underrepresented groups is unchanged. 

The availability of applied technology courses seems to be an entry point to technology for students 
at economically disadvantaged schools and for Hispanic students. However, the question remains 
as to whether this decreases the technology enrollment gap or does this create a system that 
mirrors the college prep vs. vocational education tracks. A broader eVort is needed to document 
how policies and practices contribute to inequities to guide systemic changes that can address 
gaps in opportunity, access, and quality of experience. 

The persistent disparity in technology course enrollments by gender and race is sobering but 
unsurprising. Our team is currently working with the MS faculty and staV at the seven districts that 
provided us with these administrative data. By providing technical assistance designed to enhance 
the rigor and relevance of their MS CS courses, we hope to improve the course taking patterns of 
future cohorts of students. 

In conclusion, equity in CS education is an ongoing process that requires intentional decision 
making and action toward addressing existing inequities. Given the specific contexts of diVerent 
schools, districts, and communities, equity-related goals and strategies may be expected to vary 
from place to place and likely need to be adapted over time.  
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Table 1. Sample Characteristics 

Characteristic HS 1 
(N=196) 

HS 2 
(N=62) 

HS 3 
(N=115) 

HS 4 
(N=134) 

HS 5 
(N=312) 

HS 6 
(N=54) 

HS 7 
(N=118) 

Total 
(N=991) 

Gender Female 98 
(50.0%) 

36 
(58.1%) 

57 
(49.6%) 

67 
(50.0%) 

160 
(51.3%) 

26 
(48.1%) 

61 
(51.7%) 

505 
(51.0%) 

Male 98 
(50.0%) 

26 
(41.9%) 

57 
(49.6%) 

67 
(50.0%) 

152 
(48.7%) 

28 
(51.9%) 

57 
(48.3%) 

485 
(48.9%) 

Special Education 
(classified as SPED at 
any point during the 
four years of HS) 

No 182 
(92.9%) 

59 
(95.2%) 

104 
(90.4%) 

100 
(74.6%) 

258 
(82.7%) 

41 
(75.9%) 

98 
(83.1%) 

842 
(85.0%) 

Yes 14 
(7.1%) 

3 
(4.8%) 

11 
(9.6%) 

34 
(25.4%) 

54 
(17.3%) 

13 
(24.1%) 

20 
(16.9%) 

149 
(15.0%) 

Race Asian 6 
(3.1%) 

1 
(1.6%) 

8 
(7.0%) 

1 
(0.7%) 

30 
(9.6%) 

0 
(0%) 

27 
(22.9%) 

73 
(7.4%) 

Black 11 
(5.6%) 

8 
(12.9%) 

32 
(27.8%) 

37 
(27.6%) 

12 
(3.8%) 

9 
(16.7%) 

4 
(3.4%) 

113 
(11.4%) 

Hispanic 168 
(85.7%) 

29 
(46.8%) 

69 
(60.0%) 

32 
(23.9%) 

48 
(15.4%) 

19 
(35.2%) 

44 
(37.3%) 

409 
(41.3%) 

White 11 
(5.6%) 

24 
(38.7%) 

6 
(5.2%) 

64 
(47.8%) 

222 
(71.2%) 

26 
(48.1%) 

43 
(36.4%) 

396 
(40.0%) 

English Learner 
(classified as EL at any 
point during the four 
years of HS) 

No 163 
(83.2%) 

61 
(98.4%) 

112 
(97.4%) 

126 
(94.0%) 

311 
(99.7%) 

53 
(98.1%) 

112 
(94.9%) 

938 
(94.7%) 

Yes 33 
(16.8%) 

1 
(1.6%) 

3 
(2.6%) 

8 
(6.0%) 

1 
(0.3%) 

1 
(1.9%) 

6 
(5.1%) 

53 
(5.3%) 

Economically 
Disadvantaged 

No 35 
(17.9%) 

33 
(53.2%) 

15 
(13.0%) 

41 
(30.6%) 

279 
(89.4%) 

20 
(37.0%) 

65 
(55.1%) 

488 
(49.2%) 

Yes 161 
(82.1%) 

29 
(46.8%) 

100 
(87.0%) 

93 
(69.4%) 

33 
(10.6%) 

34 
(63.0%) 

53 
(44.9%) 

503 
(50.8%) 

Chronically Absent in 
HS (at any point during 
the four years of HS) 

No 151 
(77.0%) 

54 
(87.1%) 

84 
(73.0%) 

69 
(51.5%) 

273 
(87.5%) 

41 
(75.9%) 

93 
(78.8%) 

765 
(77.2%) 

Yes 45 
(23.0%) 

8 
(12.9%) 

31 
(27.0%) 

65 
(48.5%) 

39 
(12.5%) 

13 
(24.1%) 

25 
(21.2%) 

226 
(22.8%) 

Attended MS where CS 
was required? 

Elective 0 
(0%) 

0 
(0%) 

0 
(0%) 

134 
(100%) 

312 
(100%) 

54 
(100%) 

0 
(0%) 

500 
(50.5%) 

Required  196 
(100%) 

62 
(100%) 

115 
(100%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

118 
(100%) 

491 
(49.5%) 

Number of Technology 
Courses Taken in HS 
(at any point during the 
four years of HS) 

0 104 
(53.1%) 

10 
(16.1%) 

25 
(21.7%) 

79 
(59.0%) 

168 
(53.8%) 

2 
(3.7%) 

80 
(67.8%) 

468 
(47.2%) 

1 49 
(25.0%) 

16 
(25.8%) 

74 
(64.3%) 

38 
(28.4%) 

64 
(20.5%) 

34 
(63.0%) 

26 
(22.0%) 

301 
(30.4%) 

2+ 43 
(21.9%) 

36 
(58.1%) 

16 
(13.9%) 

17 
(12.7%) 

80 
(25.6%) 

18 
(33.3%) 

12 
(10.2%) 

222 
(22.4%) 

Number of CS Courses 
Taken in HS (at any 
point during the four 
years of HS) 

0 113 
(57.7%) 

25 
(40.3%) 

98 
(85.2%) 

124 
(92.5%) 

229 
(73.4%) 

33 
(61.1%) 

106 
(89.8%) 

728 
(73.5%) 

1 48 
(24.5%) 

18 
(29.0%) 

13 
(11.3%) 

7 
(5.2%) 

48 
(15.4%) 

19 
(35.2%) 

6 
(5.1%) 

159 
(16.0%) 

2+ 35 
(17.9%) 

19 
(30.6%) 

4 
(3.5%) 

3 
(2.2%) 

35 
(11.2%) 

2 
(3.7%) 

6 
(5.1%) 

104 
(10.5%) 

Number of Applied 
Technology Courses 
Taken in HS (at any 
point during the four 
years of HS) 

0 186 
(94.9%) 

11 
(17.7%) 

28 
(24.3%) 

83 
(61.9%) 

205 
(65.7%) 

5 
(9.3%) 

89 
(75.4%) 

607 
(61.3%) 

1 1 
(0.5%) 

51 
(82.3%) 

82 
(71.3%) 

42 
(31.3%) 

65 
(20.8%) 

49 
(90.7%) 

25 
(21.2%) 

315 
(31.8%) 

2+ 9 
(4.6%) 

0 
(0.0%) 

5 
(4.3%) 

9 
(6.7%) 

42 
(13.5%) 

0 
(0.0%) 

4 
(3.4%) 

69 
(7.0%) 

Note. One student had missing data on gender so analysis n=990. 
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Table 2. Comparing Multilevel Logistic Regression Results for Di>erent Target Variables 

Predictor HS Course Taking Outcome 
Any Technology Course Any CS-Focused Technology Course Any Applied Technology Course 

Odds 
Ratio 

Confidence 
Interval 

p Cohen’s 
d 

Odds 
Ratio 

Confidence 
Interval 

p Cohen’s 
d 

Odds 
Ratio 

Confidence 
Interval 

p Cohen’s 
d 

Fixed EDects 
Intercept 1.06 0.28 – 4.05 0.928 0.034 0.32 0.12 – 0.82 0.018 0.637 0.22 0.13 – 0.38 <0.001 0.837 

Gender (1=male) 3.33 2.48 – 4.48 <0.001 0.664 3.85 2.73 – 5.42 <0.001 0.743 3.12 2.25 – 4.35 <0.001 0.628 
Race – Asian (1=yes) 3.64 2.00 – 6.61 <0.001 0.712 3.77 2.00 – 7.09 <0.001 0.731 1.99 1.10 – 3.63 0.024 0.381 
Race – Black (1=yes) 1.03 0.60 – 1.78 0.910 0.017 0.57 0.28 – 1.16 0.120 0.310 1.29 0.73 – 2.25 0.380 0.139 
Race – Hispanic (1=yes) 1.50 0.97 – 2.31 0.070 0.222 0.94 0.57 – 1.55 0.801 0.036 1.71 1.09 – 2.66 0.019 0.294 
Special Education (1=yes) 0.73 0.48 – 1.10 0.131 0.175 0.49 0.29 – 0.84 0.009 0.392 1.05 0.68 – 1.62 0.817 0.028 
English Learner (1=yes) 0.99 0.53 – 1.86 0.975 0.006 0.96 0.47 – 1.96 0.914 0.021 0.90 0.37 – 2.20 0.818 0.058 
Economically 
Disadvantaged (1=yes) 

0.69 0.46 – 1.04 0.078 0.204 0.75 0.47 – 1.20 0.227 0.160 0.74 0.48 – 1.16 0.191 0.164 

Chronically Absent, any 
time during HS (1=yes) 

0.95 0.65 – 1.37 0.765 0.031 0.97 0.63 – 1.50 0.899 0.015 0.93 0.61 – 1.40 0.714 0.043 

Grade 8 achievement (GPA) 0.86 0.72 – 1.03 0.111 0.083 0.87 0.71 – 1.06 0.162 0.080 1.08 0.86 – 1.34 0.505 0.041 
Attended MS where CS was 
required (1=yes) 

0.43 0.05 – 3.66 0.439 0.466 0.33 0.07 – 1.56 0.161 0.617 1.24 0.58 – 2.65 0.585 0.117 

Percent Special Education 0.94 0.31 – 2.81 0.907 0.036 0.69 0.32 – 1.49 0.346 0.205 1.36 0.92 – 2.01 0.123 0.169 
Percent Economically 
Disadvantaged 

3.58 1.66 – 7.70 0.001 0.703 1.20 0.69 – 2.08 0.512 0.101 3.70 2.77 – 4.94 <0.001 0.721 

Percent English Learners 0.18 0.08 – 0.42 <0.001 0.940 0.57 0.33 – 0.98 0.043 0.310 0.07 0.04 – 0.10 <0.001 1.503 
Percent of All Tech Courses 
ODered that are CS 

2.37 1.02 – 5.55 0.046 0.477 2.84 1.61 – 5.01 <0.001 0.576 2.47 1.72 – 3.54 <0.001 0.497 

Random EDects 
σ2 3.29 3.29 3.29 
τ00 0.36 0.13 0.00 
ICC 0.10 0.04 - 
N schools 7 7 7 

N students 990 990 990 
Marginal R2 / Conditional R2 0.270 / 0.342 0.289 / 0.316 0.461 / NA 
Note. p-values in bold are statistically significant at p < 0.05 

 


